α-Scorpion Toxin Impairs a Conformational Change that Leads to Fast Inactivation of Muscle Sodium Channels
نویسندگان
چکیده
Alpha-scorpion toxins bind in a voltage-dependent way to site 3 of the sodium channels, which is partially formed by the loop connecting S3 and S4 segments of domain IV, slowing down fast inactivation. We have used Ts3, an alpha-scorpion toxin from the Brazilian scorpion Tityus serrulatus, to analyze the effects of this family of toxins on the muscle sodium channels expressed in Xenopus oocytes. In the presence of Ts3 the total gating charge was reduced by 30% compared with control conditions. Ts3 accelerated the gating current kinetics, decreasing the contribution of the slow component to the ON gating current decay, indicating that S4-DIV was specifically inhibited by the toxin. In addition, Ts3 accelerated and decreased the fraction of charge in the slow component of the OFF gating current decay, which reflects an acceleration in the recovery from the fast inactivation. Site-specific fluorescence measurements indicate that Ts3 binding to the voltage-gated sodium channel eliminates one of the components of the fluorescent signal from S4-DIV. We also measured the fluorescent signals produced by the movement of the first three voltage sensors to test whether the bound Ts3 affects the movement of the other voltage sensors. While the fluorescence-voltage (F-V) relationship of domain II was only slightly affected and the F-V of domain III remained unaffected in the presence of Ts3, the toxin significantly shifted the F-V of domain I to more positive potentials, which agrees with previous studies showing a strong coupling between domains I and IV. These results are consistent with the proposed model, in which Ts3 specifically impairs the fraction of the movement of the S4-DIV that allows fast inactivation to occur at normal rates.
منابع مشابه
Binding of scorpion toxin to receptor sites associated with sodium channels in frog muscle. Correlation of voltage-dependent binding with activation
Purified scorpion toxin (Leiurus quinquestriatus) slows inactivation of sodium channels in frog muscle at concentrations in the range of 17-170 nM. Mono[125I]iodo scorpion toxin binds to a single class of sites in frog sartorius muscle with a dissociation constant of 14 nM and a binding capacity of 13 fmol/mg wet weight. Specific binding is inhibited more than 90% by 3 microM sea anemone toxin ...
متن کاملInteraction of Scorpion α-Toxins with Cardiac Sodium Channels
The effects of the scorpion alpha-toxins Lqh II, Lqh III, and LqhalphaIT on human cardiac sodium channels (hH1), which were expressed in human embryonic kidney (HEK) 293 cells, were investigated. The toxins removed fast inactivation with EC(50) values of <2.5 nM (Lqh III), 12 nM (Lqh II), and 33 nM (LqhalphaIT). Association and dissociation rates of Lqh III were much slower than those of Lqh II...
متن کاملPotent modulation of the voltage-gated sodium channel Nav1.7 by OD1, a toxin from the scorpion Odonthobuthus doriae.
Voltage-gated sodium channels are essential for the propagation of action potentials in nociceptive neurons. Nav1.7 is found in peripheral sensory and sympathetic neurons and involved in short-term and inflammatory pain. Nav1.8 and Nav1.3 are major players in nociception and neuropathic pain, respectively. In our effort to identify isoform-specific and high-affinity ligands for these channels, ...
متن کاملDirect Evidence that Scorpion α-Toxins (Site-3) Modulate Sodium Channel Inactivation by Hindrance of Voltage-Sensor Movements
The position of the voltage-sensing transmembrane segment, S4, in voltage-gated ion channels as a function of voltage remains incompletely elucidated. Site-3 toxins bind primarily to the extracellular loops connecting transmembrane helical segments S1-S2 and S3-S4 in Domain 4 (D4) and S5-S6 in Domain 1 (D1) and slow fast-inactivation of voltage-gated sodium channels. As S4 of the human skeletal...
متن کاملOpen- and closed-state fast inactivation in sodium channels: differential effects of a site-3 anemone toxin.
The role of sodium channel closed-state fast inactivation in membrane excitability is not well understood. We compared open- and closed-state fast inactivation, and the gating charge immobilized during these transitions, in skeletal muscle channel hNa(V)1.4. A significant fraction of total charge movement and its immobilization occurred in the absence of channel opening. Simulated action potent...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of General Physiology
دوره 132 شماره
صفحات -
تاریخ انتشار 2008